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Problem setup

Want to find distinct, high-quality minima for the problem
minimize f(x)
XERT
subject to: x € D,

when D is compact, ¢ concurrent evaluations of f are possible, and
relatively little is known about f a priori.
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Problem setup

Want to find distinct, high-quality minima for the problem
minimize f(x)
XERT
subject to: x € D,

when D is compact, ¢ concurrent evaluations of f are possible, and
relatively little is known about f a priori.

v

Derivatives of f may or may not be available

v

c is fairly small

v

Evaluating f is expensive

v

High-quality can be measured by more than the objective
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Motivation




Initial approaches

> Grid over the domain (easily parallelizable)
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Initial approaches

> Grid over the domain (easily parallelizable)
» Random sampling (easily parallelizable)
» Evolutionary Algorithms (many are parallelizable)

> Genetic Algorithm

> Simulated Annealing

> Particle Swarm

» Ant Colony Optimization
» Bee Colony Optimization
> Cuckoo Search

» Bacterial Colony Optimization
» Grey Wolf Optimization

» Firefly Optimization

» Harmony Search

» River Formation Dynamics



Global DFO

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.
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Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem
> convex f
» separable f
> finite domain D
» concurrent evaluations of f

» Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.
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Multistart Methods

An algorithm must trade-off between “refinement” and “exploration”.
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Multistart Methods

An algorithm must trade-off between “refinement” and “exploration”.

» Explore by random sampling from the domain D

> Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.

> least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
> objective, local solver, and global solver

- Can require many sequential evaluations for the local solver



Where to start?

MLSL:
X € Sk
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MLSL: (S2)—~(S4)
X e S

(S2) #x € Sk with
[II5X — x|| < rx and f(x) < f(X)]
(S3) X has not started a local
optimization run

(S4) X is at least . from 0D and v
from known local minima
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Where to start?

MLSL: (S2)—(S4)

X e S
(S1) Px € Ly with

[II%x = x| < rx and f(x) < f(X)]
(S2) Px € Sk with

[II5X — x|| < rx and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) x is at least . from 0D and v
from known local minima

APOSMM: (S1)—(S4), (L1)—(L6)
xe Ly
(L1) Px € Ly
[II%x = x|| < rx and f(x) < f(X)]
(L2) Px € Sk with
[[IX = x|| < r¢ and f(x) < f(X)]
(L3) X has not started a local
optimization run

(L4) x is at least u from 0D and v
from known local minima

(L5) X is not in an active local
optimization run and has not
been ruled stationary

(L6) Jrk-descent path in Hy from
some x € Sy satisfying
(52-S4) to X
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APOSMM

Iteration: 37; r_k: 0.589
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APOSMM

Iteration: 38; r_k: 0.574
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APOSMM

Iteration: 39; r_k: 0.560
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APOSMM

Iteration: 40; r_k: 0.548
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APOSMM

Iteration: 41; r_k: 0.536
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APOSMM

Iteration: 42; r_k: 0.525
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APOSMM

Iteration: 43; r_k: 0.515
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APOSMM

Iteration: 44; r_k: 0.497
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APOSMM

Iteration: 45; r_k: 0.480
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APOSMM

Iteration: 80; r_k: 0.281
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APOSMM

Iteration: 81; r_k: 0.279
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APOSMM

Iteration: 82; r_k: 0.276
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APOSMM

Iteration: 83; r_k: 0.274
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APOSMM

Iteration: 84; r_k: 0.272
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APOSMM

Iteration: 85; r_k: 0.270
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APOSMM

Iteration: 86; r_k: 0.268
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APOSMM

Iteration: 87; r_k: 0.266
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APOSMM

Iteration: 88; r_k: 0.264
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APOSMM

Iteration: 89; r_k: 0.263
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APOSMM

Iteration: 90; r_k: 0.262

8 of 19



APOSMM

Iteration: 91; r_k: 0.261
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APOSMM

Iteration: 92; r_k: 0.260
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APOSMM

Iteration: 93; r_k: 0.259
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APOSMM

Iteration: 94; r_k: 0.258

8 of 19



APOSMM

Iteration: 95; r_k: 0.257
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APOSMM

Iteration: 96; r_k: 0.256
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APOSMM

Iteration: 97; r_k: 0.255
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APOSMM

Iteration: 98; r_k: 0.255
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APOSMM

Iteration: 99; r_k: 0.254
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.
Properties of the local optimization method

Necessary:
» Honors a starting point
» Honors bound constraints
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N
Properties of the local optimization method

Necessary:
» Honors a starting point

» Honors bound constraints
ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBY QA satisfies these [Powell, 2009]

Possibly beneficial:
» Can return multiple points of interest

v

Reports solution quality/confidence at every iteration
» Can avoid certain regions in the domain

» Uses a history of past evaluations of f

v

Uses additional points mid-run
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Exploiting Structure

» Nonsmooth, composite optimization

minimize f(x) = h(F(x))

X

where VF is unavailable but 0h is known

» Least-squares minimization

minimize f(x) = > (Fi(x) = T’

]
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Theoretical results

> f € C2, with local minima in the interior of D, and the distance
between minima is bounded away from zero.

» L is strictly descent and converges to a minimum (not a stationary
point).

» Each run has points evaluated often enough

| 2

51log |Sk|
re = \/»\/ 1 —|— vol (D) ———— S



Theoretical results

» f € C?, with local minima in the interior of D, and the distance
between minima is bounded away from zero.

» L is strictly descent and converges to a minimum (not a stationary
point).

» Each run has points evaluated often enough

>

5log Sk
re = \/_\/ 1+ (D) |Sk|

Theorem

Each minima will almost surely be identified: either found in a finite
number of evaluations or have a single local optimization run converging
asymptotically to it.
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WORKERS MANAGER CUSTODIANS

Random

stream
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Measuring Performance

GLODS Global & local optimization using direct search [Custédio,
Madeira (JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]
pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy
code [Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell
(2009)], Initial sample size: 10n
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 —
GKLS prOblemS [Gaviano et al., “Algorithm 829" (TOMS, 2003)]

» Smooth augmentation of a convex quadratic; n=2,...,7
> 10 local minima in the unit cube with a unique global minimum
» 100 problems for each n; 5 replications; 2000(n + 1) evaluations

1.0

1.2

40.9

10.6

0.3
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Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.
Let x(*,.) be the element of X* corresponding to the value f(’f)

The global minimum has been found at a level 7 > 0 after k evaluations
if an algorithm it has found a point X satisfying:

F(%) — iy < (1=7) (FOo) = 7).

where xj is the starting point for problem p.
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Measuring Performance

Notation

Let X* be the set of all local minima of f.
Let f*) be the ith smallest value {f(x*)|x* € X*}.

Let x(,) be the element of X* corresponding to the value f(’f)

The j best local minima have been found at a level 7 > 0 after k
evaluations if:

Hx(*l) ..... } N4 x { :3x € ’Hk with Hx — x(,)

< rolr )H:j—l

‘{X&),...,XG)}Q{X(’-) : dx € Hy with HX_X(*/) ‘ < rn(fr)}‘ >j—j+1,

where j and J are the smallest and largest integers such that

; . o[ Tvol(D 1
(J) =1y = fU) and where r,(7) = %
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Ability to Find Approximate Global Minimizer
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Ability to Find ; Best Minimizers
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 —
(Tolerance, # Minimizers) Comparison With Random

Sampling

Area under data profile: POSMM (L), RS (R)
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 —
(Tolerance, # Minimizers) Comparison With Random

Sampling
Percent difference between POSMM and RS areas
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APOSMM has clear advantages as tolerances tighten
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Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.
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Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

» Can write/use algorithms that exploit problem structure

Current work:
» Finding (or designing) the best local solver for our framework

» Best way to process the queue?
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